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Abstract

The partitioning of an adaptive grid for distribution over parallel processors is
considered in the context of adaptive multilevel methods for solving partial differ-
ential equations. A partitioning method based on the refinement-tree is presented.
This method applies to most types of grids in two and three dimensions. For tri-
angular and tetrahedral grids, it is guaranteed to produce connected partitions; no
other partitioning method makes this guarantee. The method is related to the OC-
TREE method and space filling curves. Numerical results comparing it with several
popular partitioning methods show that it computes partitions in an amount of time
similar to fast load balancing methods like recursive coordinate bisection, and with
mesh quality similar to slower, more optimal methods like the multilevel diffusive

method in ParMETIS.
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1 Introduction

An adaptive multigrid method solves an elliptic partial differential equation
(PDE) by beginning with a very coarse grid and cycling through phases of
adaptive refinement of the grid and multigrid solution of the linear system
of equations resulting from discretization of the PDE on the adaptive grid.
In a parallel adaptive multigrid method, the adaptive refinement phase can
cause the load balance over the processors to become unequal. If the load
is too unbalanced, the grid must be repartitioned and redistributed before

continuing with the solution phase.

An important part of a parallel adaptive multigrid method is the method for
determining this partition. In this context, it must not only produce equal sized
sets to balance the load and minimize cut edges to reduce communication, but
must also be very fast to not dominate the computation time of a fast multigrid
method, and must produce similar partitions on a grid and a refinement of

that grid to reduce redistribution costs.

In this paper we present the refinement-tree partitioning method (REFTREE),
a new method for partitioning grids that were created by adaptive refine-
ment. The method was developed as a k-way version of the recursive bisection

refinement-tree method [7] to reduce the amount of communication overhead
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in a parallel implementation. It is also very similar to the Octree Partition
method (OCTREE) [4] and is related to space filling curve methods (SFC)
[3,11,12,15]. The primary difference between REFTREE and OCTREE is the
generation of the tree. In OCTREE the tree represents a geometric refine-
ment of a region covering the domain through local subdivision of octants
(or quadrants in two dimensions), while in REFTREE the tree represents the
refinement of some initial set of coarse grid elements. The primary difference
between REFTREE and the traditional SFC methods is one of geometric
vs. algebraic orientation. In both algorithms, a space filling curve is used to
create a linear sequence of the elements. The sequence is then cut into seg-
ments, which become the partitions of the grid. SFC is more algebraic in
that it performs computations on the coordinates of the centroids of the el-
ements to determine a space filling curve ordering. In contrast, REFTREE
uses geometric subdivision of an initial set of elements to determine a space
filling curve ordering, which is more flexible for complicated geometries. Nei-
ther OCTREE nor SFC can guarantee that the partitions will be connected.
REFTREE is guaranteed to produce connected partitions for triangular and

tetrahedral grids, and usually does for other types of grids.

The rest of the paper is organized as follows. Section 2 defines what is meant by
the refinement-tree of an adaptive grid that was created by local refinement
of an initial coarse grid. Section 3 then describes how to order the nodes
in the refinement-tree such that a depth-first traversal of the tree induces
a space filling curve through the grid. Section 4 presents the refinement-tree
partitioning algorithm in both sequential and parallel form. Section 5 contains

numerical results comparing REFTREE to several other partitioning methods.
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Fig. 1. Element refinements: (a) triangle bisection, (b) triangle quadrisection, (c)
quadrilateral bisection, (d) quadrilateral quadrisection, (e) tetrahedron bisection,

(f) tetrahedron octasection, (g) hexahedron bisection, (h) hexahedron octasection.

2 Refinement-tree

In this section we define the refinement-tree of a locally refined grid. The
refinement-tree is a representation of the refinement process that created the
grid. It contains all the information about how an element was created by

refinement, but does not indicate the order in which elements were refined.



Let © be a closed, connected, bounded region in R?, d = 2, 3. For simplicity
we assume that €2 is polygonal, but that is not necessary if one uses elements
with curved edges (faces), or allows the grid to approximate 2. We define a
grid on Q, G = {E;}¥, to be a set of elements, E;, such that F; is a polygon
in R4, E; N Ej = ¢, 1 # j, and UE; = ), where E; denotes the interior of E;
and ¢ is the empty set. If, in addition, the intersection of any two elements is
either empty, a common vertex, a common side, or, in R?, a common face, then
the grid is said to be conforming. Typically in R? an element is a triangle or
quadrilateral, and in R? an element is a tetrahedron or hexahedron, although
other elements (for example, prisms) are sometimes used. In practice one only
uses conforming triangular and tetrahedral grids, but allows quadrilateral and

hexahedral grids to be nonconforming.

A locally refined grid is obtained from an initial grid Gy by subdividing (or
refining) some of the elements, and possibly further subdividing some of the
resulting elements, etc. An element is normally refined into elements of the
same type (e.g. triangles are refined into triangles). Fig. 1 illustrates the most

commonly used methods of refining elements.

The refinement-tree of a locally refined grid, T(G) = {V,{C(v;)}} consists of
a set of nodes, V = {v;}M,, and for each v; € V a set of children C(v;) C V.
Each node v; € V is contained in exactly one set C(v;), except for vy which
is called the root and not contained in any C(v;). If v; € C(v;) then v; is a
child of v; and v; is the parent of v;. If C'(v;) = ¢ then v; is called a leaf. An
ancestor of v; is any node on the (unique) path between v; and the root. The
descendants of v; are the nodes in the subtree rooted at v;. When depicted
graphically the nodes are drawn as circles and the children are drawn below

their parent and connected to the parent with an edge.
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Fig. 2. Correspondence between grid refinement and the refinement-tree.

The refinement-tree corresponds to the grid as follows. The root corresponds
to 2. The children of the root are in one-to-one correspondence with the ele-
ments in the initial grid Gy. The children of any other node correspond to the
elements that were created when the corresponding element was refined. Note
that the leaves correspond to the elements of the grid G. Fig. 2 illustrates the
correspondence between a locally refined grid that was created by bisection of
triangles and its refinement-tree. The left side of the figure shows the sequence
of refinements that created the grid, and the right side shows the refinement
tree. The numbers show the correspondence between elements of the grid and
nodes of the tree. Unlabeled elements have the same number as in the grid
above them. We will often refer to the element or the corresponding node

interchangeably.

In a distributed-memory parallel application the grid will be distributed across

the processors of a parallel computer. Consequently the refinement-tree will
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Fig. 3. A refinement-tree distributed over two processors.
also be distributed. Figure 3 illustrates the distribution of the refinement-tree
of Figure 2 over two processors. The elements of the grid are drawn in red
and green to show the two partitions which are assigned to processor 1 and
processor 2 respectively. The two trees show the local refinement-tree for each
processor, which represent the part of the grid assigned to that processor.
Clearly the local refinement-tree must contain the leaves assigned to the pro-
cessor (to represent the partition), and the ancestors of those leaves (to be a
tree). These nodes are colored red in the local refinement-tree for processor 1
and green in the local refinement-tree for processor 2. There is overlap between
the local refinement-trees, since some parents will have their children assigned
to different processors, and each of those processors must then contain the
parent in its local refinement-tree. The parallel REFTREE algorithm of Sec-
tion 4 requires slightly more overlap. It also requires that any non-leaf node
of the local refinement-tree has all of its children of the global refinement-tree

present. These nodes are colored white in Figure 3. Note that this requires



all processors to have a node corresponding to every element of the initial
grid, since they are all children of the root. This does not, however, imply
that every processor needs the full data structure for every element of the
initial grid. A “light weight” substitute data structure can be used for initial
elements assigned to other processors. This defines a minimal local refinement-
tree; additional nodes can be included if desired. For example, one may want
to include additional nodes so that the local refinement-tree corresponds to a

conforming grid.

3 Order of Children

In the refinement-tree partitioning algorithm defined in Section 4 we perform
depth-first traversals of the refinement-tree. In order for the algorithm to pro-
duce connected partitions it is crucial that the traversal visit the children of
a node in the correct order. Thus C(v;) = {c1(v;), ca(vi), ..., cm,(v;)} is an
ordered set of children. Here m; = |C(v;)| is the number of children of node

V;.

To facilitate the definition of the order of the children of a node we designate
two special vertices of an element as the in-vertexr and out-vertex. The in-vertex

must not be the same as the out-vertex.

In a depth-first traversal of the tree, the leaves of the refinement-tree are
visited in some order, or equivalently the elements of G are visited in some
order. The goal of the ordering of the children is to create a refinement-tree
for which the traversal will visit the elements in an order where each element

is connected to the preceding element. In other words, with this ordering of



the elements we can draw a connected curve that passes through each element
of G exactly once. If the grid is conforming then two connected elements must
share a common vertex, and the curve can be drawn through the vertex, which
can be designated as the out-vertex of the element that is visited first and the
in-vertex of the other element. Such a sequence of connected elements and

in/out-vertices is called a through-vertex Hamiltonian path of G.

Consider first the ordering of the children of the root, i.e., the elements of the

initial grid G. The following theorem is proven in [10]

Theorem 1 Let G be a conforming triangular or tetrahedral grid with at least
two elements. If G contains no local cut vertices and, for tetrahedra, no local
cut edges, and contains at least one interior vertex, then there exists a through-

vertex Hamiltonian path for G.

A local cut vertex is a point which, if removed, would cause the grid to become
disconnected locally. In other words, given any two elements that contain
that vertex, their intersection is only that vertex. A local cut edge is defined
similarly. An interior vertex is a vertex that is not on the boundary of §2. For

tetrahedral grids, the existence of an interior vertex is not necessary.

Unfortunately, the same result does not hold for quadrilaterals and hexahedra.
In fact, it is easy to construct examples for which no through-vertex Hamilto-
nian path exists. However, such a path often exists, and in most cases when
it does not, one can find a sequence of elements in which there are only a few

“discontinuities” where adjacent elements in the path are not connected.

The proof of Theorem 1 in [10] is a constructive proof which leads to an

efficient algorithm for constructing a through-vertex Hamiltonian path for



triangular and tetrahedral grids. An algorithm is also given for quadrilaterals
and hexahedra. That algorithm is not guaranteed to give a connected path
even when it exists, but it usually does and usually has a small number of
discontinuities when it does not. We do not repeat those algorithms here, but
refer to [10] for the details. The results of these algorithms then provide the
order of the children of the root, and the assignment of the in-vertex and
out-vertex of the elements of Gy. We comment that the algorithms in [10] will
produce a through-vertex Hamiltonian path for G, but tend to produce paths
that are not compact, and hence partitions with large boundaries. Therefore,

some other algorithm may be preferred for processing the initial grid G,.

Next consider the ordering of the children of the non-root nodes. Here we seek
a through-vertex Hamiltonian path through the children that begins at the
in-vertex of the parent and ends at the out-vertex of the parent. This insures
that if we have a through-vertex Hamiltonian path in the grid before refining
the parent, then we still have one after refinement. In fact, the segment of
the path that passes through the parent is replaced by a segment that passes

through all the children in a continuous manner.

In general one can find a path through the children, if one exists, by exhaustive
search. Although the complexity of exhaustive search is exponential in the
number of children, a refinement strategy typically produces a small number
of children so it is not prohibitive. On the other hand, it is more efficient to
use a set of templates for a given refinement strategy because the number of

cases that arise is small.

The templates for triangle bisection are given in Figure 4. There are three

cases depending on the relationship between the vertex opposite the side to be

10
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Fig. 4. The three templates for child order and in/out-vertices for refinement by

triangle bisection.

bisected and the in-vertex and out-vertex. Figure 4(a) shows the case where
the vertex opposite the side to be bisected is neither the in-vertex nor the
out-vertex. The parent’s in-vertex and out-vertex are labeled “I” and “O7,
respectively, outside the parent element. The children’s in-vertices and out-
vertices are labeled inside the child elements. To identify the order of the
children, begin at the in-vertex of the parent and traverse the children going
through the out-vertex and in-vertex of the next child. Figure 4(b) shows the
case where the out-vertex is opposite the side to be bisected, and Figure 4(c)

shows the case where the in-vertex is opposite the side to be bisected.

The templates for five of the other refinement strategies of Figure 1 are shown
in Figures 5 to 9. For triangle quadrisection and tetrahedra octasection, there is
only one template. There are two cases for quadrilateral quadrisection, depend-

ing on whether the out-vertex is adjacent to the in-vertex or is the opposite

11



Fig. 5. The template for child order and in/out-vertices for refinement by triangle

quadrisection.
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Fig. 6. The two templates for child order and in/out-vertices for refinement by

quadrilateral quadrisection.

corner. There are four cases for tetrahedra bisection, depending on whether
or not each of the in-vertex and out-vertex is on the edge to be bisected. And
there are three cases for hexahedron octasection, depending on whether the
out-vertex shares an edge with the in-vertex, shares a face but not an edge,

or is the opposite corner.

The assignment of in and out vertices to children does not work for all refine-
ment strategies. In particular it can fail for a refinement strategy that produces
a child that contains two vertices that are not contained in any other child. If
those vertices happen to be the in-vertex and out-vertex of the parent, then
it will be impossible to start at the in-vertex, pass through all the children,

and end at the out-vertex without visiting the same element twice. This is il-

12
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Fig. 7. The four templates for child order and in/out-vertices for refinement by
tetrahedra bisection.

lustrated in Figure 10 for bisected quadrilaterals. It also occurs with bisected
hexahedra. These are the only two commonly used refinement strategies for

which the method fails, as far as the author knows.

Within an element, the traversal of the descendants is in a hierarchical manner,
and does not leave an element until all the descendants have been visited.
This leads to a space filling curve within each of the initial elements. Many
of these are well known space filling curves [13]. For example, quadrilateral
quadrisection leads to the Hilbert SFC (Figure 11), and triangle bisection

leads to the Sierpinski SFC (Figure 12).

13
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Fig. 8. The template for child order and in/out-vertices for refinement by tetrahedra

octasection.

The connectedness of the space filling curve within each element, together with
Theorem 1 and the connectedness of a through-vertex Hamiltonian path, lead

to the following result.

Theorem 2 Let a partition be the set of elements contained in any segment of
the ordered list of elements obtained by a depth-first traversal of a refinement-

tree with the children ordered by the methods described in this section.

(1) If the grid is a triangular grid refined by bisection or quadrisection, or a
tetrahedral grid refined by bisection or octasection, then the partition is
connected.

(2) If the grid is a quadrilateral grid refined by quadrisection or a hexahe-

14
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Fig. 9. The three templates for child order and in/out-vertices for refinement by

hexahedra octasection.

I O

Fig. 10. Example that illustrates that the method can fail for bisected quadrilaterals.
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Fig. 11. The Hilbert space filling curve.
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Fig. 12. The Sierpinski space filling curve.
dral grid refined by octasection, and a through-vertex Hamiltonian path is

found for the initial grid, then the partition is connected.

4 Refinement-tree Partitioning Method

This section describes the refinement-tree (REFTREE) algorithm. We first

present it as a sequential algorithm, and then present the parallel form.

In REFTREE, the nodes of the refinement-tree are weighted. The weight
assigned to a node should be related to the amount of work associated with the

corresponding element. For example, elements containing a Dirichlet boundary

16
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Fig. 13. Partitioning the grid and refinement-tree into two sets.

may have a smaller weight than elements in the interior of the domain. The
weights are not limited to leaf nodes; one may wish to apply weights to interior
nodes to, for example, represent the work on a coarse grid of a multigrid solver.
In the simplest weighting scheme, the leaf nodes have weight 1.0 and the
interior nodes have weight 0.0. This results in a partitioning of the elements of
the final grid into equal sized sets (or differing by at most one if the number
of elements is not a multiple of the number of partitions). For predictive load
balancing (where the new partition is computed before the grid is refined), the
error indicator (used by an adaptive refinement method to determine which
elements get refined [6]) is a reasonable weight, since one expects the elements

with larger error indicators to be refined more times.

REFTREE consists of two phases. In the first phase, every node is labeled

with the sum of the weights in the subtree rooted at that node. This is ac-

17



complished by a depth first traversal of the tree, and takes O(NN) operations.
In the second phase, a truncated depth first traversal of the tree is performed
to create the partitions. The desired size of each partition is determined by
dividing the summed weight at the root node by the number of partitions, and
the partitions are initialized to be empty. During the traversal, the summed
weights at the nodes are examined relative to the size of the partition un-
der construction. If it is small enough to be added to the partition without
exceeding the desired size, then it is added and the subtree is not traversed.
Otherwise, the children are visited and the subtree will be split among two
or more partitions. Figure 13 illustrates this process for partitioning the grid
of Figure 2 into two parts with equal number of elements. The leaves have
weight 1 and the interior nodes have weight 0. The color of the elements in
the sequence of grids shows the sets of elements that were added to a par-
tition in each step. The numbers in the nodes of the refinement-tree are the
summed weights. Figure 14 gives the sequential algorithm, using the notation

of Section 2.

Most of the time the subtree will fit in the current partition, so large portions
of the grid are assigned to a partition at the same time. Only when a partition
is nearly full will the traversal go deep into the tree to find a small enough
subtree to fill out the partition. If there are p partitions and the depth of the
tree is O(log N), one would expect the second phase to require O(plogN)

operations.

In a parallel implementation, the refinement-tree is distributed over the p
processors, as described in Section 2. Since the refinement-tree is distributed,
the summation of the weights must be done in a distributed manner. This can

be accomplished with two tree traversals and one all-to-all communication

18



procedure REFTREE
sum_weights(vg)

make_partitions(v,1,0,summed_weight(vy)/p)

end procedure REFTREE

procedure sum_weights(v;)
summed_weight(v;) = weight(v;)
i (|C(01)] # 0) then
for j=1,|C(v;)|
summed_weight(v;) = summed_weight(v;) + sum_weights(c;(v;))
end for
endif
return summed_weight(v;)

end procedure sum_weights

procedure make_partitions(v;, current_partition, current_sum, cutoff)
new_sum = current_sum + summed_weight(v;)
if (new_sum < cutoff) then
v; and all descendants are assigned to current_partition
current_sum = new_sum
else
if (|C(v;)| = 0) then
current_partition = current_partition + 1
cutoff = cutoff + summed_weight(vg)/p
v; is assigned to current_partition
current_sum = new_sum
else
for j=1,|C(v;)] 19

make_partition(c;(v;), current_partition, current_sum, cutoff)

end for

endif



step. In the first tree traversal, the weights are summed for nodes that belong
to this processor. Leaf nodes of the local refinement-tree that are not leaf nodes
of the global refinement-tree, called pruning points, are given the weight 0.0,
but otherwise the summation occurs as usual. The processors then exchange
information to provide the summed weights for the pruning points, by each
processor sending what it has as the summed weight for each node that is
a pruning point on a different processor. Note that a processor may receive
contributions for a pruning point from more than one processor, and the sum
of these is the correct summed weight for that node. Now with the summed
weight available for the pruning points, a second traversal is performed to

obtain the correct summed weights for the entire tree.

Each processor now has sufficient information to perform the second phase
of the REFTREE algorithm independently. Without further communication,
all processors will obtain the same partition, except for details within parts
of the grid that the processor does not have. These details are not needed
since all the processor needs to know is the new assignment for the elements
it currently has so that it can send those elements to the new owner during

the redistribution of data.

For a grid with N elements, if each processor has O(N/p) elements and
O((N/p)"), r < 1, “shadow” (or “ghost”) elements, the expected number of
operations on each processor is O(N/p). Typically r = 1/2 for two dimensional

grids and r = 2/3 for three dimensional grids.
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5 Numerical Results

Numerical experiments were performed to demonstrate the performance of the
refinement-tree partitioning method and to compare it to several other par-
titioning methods for dynamic load balancing. Three example problems were
used: (1) a problem that is commonly used for adaptive refinement demon-
strations, (2) a two dimensional problem on a more complicated domain, and

(3) a three dimensional problem.

The computations for the two dimensional problems were performed on a clus-
ter of 1.66GHz AMD Athlon MP 2000 ! based PCs operating under the Red
Hat 7.3 distribution of Linux with kernel 2.2.20. Programs were compiled with
Lahey Fortran 95 version 6.1 and gcc 2.96. Message passing was performed
with the LAM 6.5.9 implementation of MPI. The computations for the three
dimensional problem were performed on a cluster of 2.4GHz Xeon based PCs
with Fedora Core 3, Linux kernel 2.6.10, Lahey Fortran 95 version 6.2, gcc
3.4.3, and LAM 7.1.1.

The two dimensional problems were solved with PHAML version 0.9.13 [8,9].
This is an adaptive multilevel program that uses triangle bisection for refine-
ment. The grid for the three dimensional problem was generated by hexa-
hedron octasection outside the context of a PDE solver. All partitions were

computed by Zoltan version 1.52 [1,2], which includes ParMETIS version 3.1

I The mention of specific products, trademarks, or brand names is for purposes
of identification only. Such mention is not to be interpreted in any way as an en-
dorsement or certification of such products or brands by the National Institute of
Standards and Technology. All trademarks mentioned herein belong to their respec-

tive owners.
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[5,14].

The partitioning methods used in these computations are:

(1) refinement-tree (REFTREE) — the method described in this paper,
(2) Hilbert space filling curve (HSFC) — a traditional space filling curve
method,
(3) OCTREE (OCTREE) — the OCTREE method,
(4) ParMETIS (ParMETIS) — a multilevel diffusive method (ParMETIS_RepartLDiffusion)
from the popular static partitioning library,
(5) recursive coordinate bisection (RCB) — a method that recursively bisects
the region into two parts, with separators parallel to the axes, and
(6) recursive inertial bisection (RIB) — a method that recursively bisects the
region into two parts, with separators orthogonal to the longest direction

of the subregion.

Further details of the methods can be found in [2] and the references therein.
We comment on the expected performance of two of the methods. First, this
implementation of the OCTREE method was intended for three dimensional
grids. It partitions a two dimensional grid by embedding it in three dimen-
sions and partitioning it as a three dimensional grid. Consequently we expect
OCTREE to give an OCTREE quality of partition, but to have a longer com-
putation time than would be possible with a two dimensional implementation.
Second, ParMETIS was intended to be a near-optimal static partitioner for a
large number of processors. Consequently we expect ParMETIS to have longer

computation times but produce higher quality partitions.
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Fig. 15. The L shaped domain and an adaptive grid with 256 nodes.

The first example is a problem that is often used to demonstrate adaptive
refinement. It is Laplace’s equation with Dirichlet boundary conditions on an
L shaped domain. There is a singularity at the reentrant corner, which induces
smaller elements in that region. An adaptive grid for this problem is shown
in Figure 15. Sample partitions for 16 processors are shown in Figure 16 for

each of the methods.

The program begins with a grid containing six triangles and refines it to
approximately 16000 nodes sequentially. It then cycles through three phases:
1) partition the grid, 2) refine to approximately double the number of nodes,
and 3) solve the linear system using two multigrid V-cycles. The program
terminates when there are approximately one million nodes. Runs were made

using from 2 to 32 processors (the number of partitions equals the number of

23



(a) (b)

(e) ®

Fig. 16. Sample partitions for the L domain problem. (a) REFTREE, (b) HSFC,

(¢) OCTREE, (d) ParMETIS, (e) RCB, (f) RIB.
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Fig. 17. Time for REFTREE partition with L. domain example.

processors). Since partitioning occurs before refinement, this is a predictive
load balancing approach. The weights on the elements are the error indicators
used by the adaptive refinement algorithm, which in this case is a simple
hierarchical coefficient estimator [6]. The wall clock time for each partitioning
phase was measured using the Fortran subroutine system_clock. The number of
elements moved between processors was counted at the end of each partitioning
phase. The number of cut edges in the dual graph of the grid (i.e., the number
of adjacent elements assigned to different partitions) was counted after each

refinement phase.

Figure 17 shows the time for computing each partition by REFTREE for 2,
4, 8, 16 and 32 processors. The O(N) growth is clearly demonstrated inde-
pendent of the number of processors. O(1/p) growth is observed for 2, 4 and
8 processors, but the method slows down for 16 and 32 processors. This is
primarily due to increasing communication costs in the all-to-all communica-

tion of the algorithm, which is not reflected in the operation count of Section
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Fig. 18. Time for REFTREE partition with L domain example without time spent

on communication.

4. Figure 18 shows the execution time of REFTREE with the communica-
tion time removed. Here we observe the decrease in time as the number of
processors is increased. This indicates that the REFTREE method with all-
to-all communication may not be appropriate for large numbers of processors.
However, the time is still well below 10% of the total running time of the

adaptive-refinement multigrid-solution program, which was about 60 seconds.

Figure 19 shows the time for computing each partition by each method for 32
processors. As expected, OCTREE and ParMETIS are the slowest methods.
There is approximately a factor of 10 difference between the fastest method,
HSFC, and the slowest. REFTREE is comparable to RIB and is in the middle
of the pack, running 2 to 3 times slower than HSFC. Again the time for any

of the methods is well below the total running time of the program.

Figures 20 and 21 give an indication of the quality of the partitions as mea-

sured by the number of cut edges. Figure 20 shows the average number of cut
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Fig. 20. Average number of cut edges for each method with 32 partitions of the L

domain.

edges per partition, and Figure 21 shows the maximum number of cut edges

over all partitions. In general, the worst method is within a factor of 2 of the

best method. For the average number of cut edges, REFTREE is generally

the best method with ParMETIS coming in second. For maximum number of

27



T T ‘ ‘

—— REFTREE

. HSFC o]
OCTREE

--- ParMETIS
- RCB
-~ RIB

1000

maximum cut edges

‘lOO 1 ‘ 1 ‘
1x10° 1x10°

nodes

Fig. 21. Maximum number of cut edges for each method with 32 partitions of the

L domain.

Table 1

Number of elements transferred.
Method 250K 500K 1M
REFTREE 58829 186078 213588
HSFC 128719 205851 362722
OCTREE 36796 89504 135243
ParMETIS 7307 9962 32097
RCB 50563 61600 96463
RIB 125665 291553 669757

cut edges they switch roles. HSFC, which was the fastest method, generally

produces the largest number of cut edges.

A second measure of partitioning quality is the number of elements that are
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Fig. 22. Partition in 8 sets for a complex domain. (a) REFTREE, (b) HSFC, (c)
OCTREE, (d) ParMETIS, (e) RCB, (f) RIB.

moved from one partition to another. Table 1 gives the total number of el-
ements that were transferred between partitions during the load balancing
of the grids with about 250,000, 500,000 and 1,000,000 nodes. Here we see
ParMETIS is clearly superior to the other methods. REFTREE is in the mid-

dle of the pack.

The second example solves Laplace’s equation on a more complex domain. The
domain and partitions for 8 processors are shown in Figure 22. This example
illustrates that all of the other methods can produce disconnected partitions.

In Figure 22 REFTREE is the only method to produce connected partitions.
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Table 2

Results for 16 processors with the NIST domain.

Method time (s.) cuts moved
REFTREE 4.80 2607 298206
HSFC 2.45 5529 360824
OCTREE 8.69 7016 464946
ParMETIS 7.40 1788 154424
RCB 4.61 3072 269166
RIB 0.56 2828 510559

The same experiment was run for this problem as for the first example. The re-
sults are similar, and are summarized for 16 processors in Table 2. The amount
of time used to compute partitions is given in column 2. Again HSFC is the
fastest, ParMETIS and OCTREE the slowest, and the others are comparable.
The quality of partitions as indicated by the maximum number of cut edges
is best for ParMETIS with REFTREE second, and HSFC and OCTREE the
worst. For the number of elements moved while load balancing the grid with
1,000,000 nodes, ParMETIS is best and REFTREE is in the middle of the

pack.

The third example examines the partitioning algorithms for a three dimen-
sional hexahedral grid with refinement in a half sphere of radius 1/4 centered
at the center of the top of a cube. This grid was not created in the context of
solving a PDE, but was artificially created by refining elements that have a

corner in the half sphere. A sample grid with 2164 elements is shown in Figure
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Fig. 23. An example grid for the 3D domain.

23, and partitions for 8 processors with each of the methods is shown in Figure
24. In these figures, the cube has been cut down the middle and opened up to

show the grid and partitions in the interior of the cube.

For this example, the program begins with a grid consisting of one cube and
refines it once sequentially to a grid with 36 elements. It then alternately par-
titions and refines the grid. When the program terminates there are 4,605,840
elements. Runs were performed with 16 processors. The weights were 1.0 for
leaf elements and 0.0 for non-leaf elements. The same measurements were

made as in the first example.

Table 3 summarizes the results for the three dimensional example. It reports
the amount of time to partition the final grid, the number of cut edges in the

final partition, and the number of elements moved by the final partition. Again
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Fig. 24. Partition in 8 sets for a 3D domain. (a) REFTREE, (b) HSFC, (c) OC-
TREE, (d) ParMETIS, (¢) RCB, (f) RIB.

HSFC is the fastest and OCTREE is the slowest. REFTREE and ParMETIS
are also much slower than the fastest methods. For number of cut edgtes,

REFTREE is comparable the best method, RCB. ParMETIS again has the
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Table 3

Results for 16 processors with the three dimensional example.

Method time (s.) cuts  moved

REFTREE 36.02 185346 102362

HSFC 3.82 250561 1772104

OCTREE 45.10 214907 151455

ParMETIS 31.03 233305 62384

RCB 6.79 167019 101727

RIB 12.29 240660 1178204

fewest elements moved, with RCB coming in second and REFTREE nearly

identical to RCB. HSFC moved the most.

6 Conclusion

This paper introduced the refinement-tree partitioning method (REFTREE)
for grids that were created by adaptive refinement. It is closely related to the
OCTREE method and space filling curve methods. REFTREE uses a tree rep-
resentation of the refinement process with weights representing the amount of
work associated with each element. The method applies to almost all types
of elements and refinement strategies in two and three dimensions. For trian-
gles and tetrahedra, it is guaranteed to produce connected partitions, which
is not true of other partitioning methods. For all other applicable element
types and refinement strategies it will produce connected partitions if a path

through the elements of the initial grid can be found. When executed in paral-
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lel on p processors, the expected number of operations for partitioning into p
sets is O(N/p) with only one communication step. However, the communica-
tion step involves all-to-all communication which can become dominant for a
large number of processors. Numerical results were presented in two and three
dimensions. These results showed that in two dimensions REFTREE runs
as quickly as methods like recursive coordinate bisection and produces high
quality partitions like multilevel diffusion. In three dimensions, REFTREE

was slower, but still produced high quality partitions.
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